Parkinson’s Disease
Patients Journey Through Deep Brain Stimulation of The Subthalamic Nucleus at Queen Elizabeth Hospital Birmingham
The Movement Disorder Team at the Queen Elizabeth Hospital Birmingham wishes to acknowledge the significant support of all patients and carers for their unique perspective on their experience of undergoing deep brain stimulation at this centre. The patients and carers views have provided us with an insight that we would not have otherwise known.

As a result of the valuable feedback from patients/carers we have placed greater emphasis on patient involvement and partnership working. Together we have re-designed and significantly improved patient information, to ensure accurate information is given at the appropriate time along the journey of deep brain stimulation surgery.

All patients referred to our centre for deep brain stimulation surgery will have access to:

- Patient-centred written information
- A copy of the DVD ‘A patients Journey through DBS’ filmed at the Queen Elizabeth Hospital Birmingham
- Opportunity to meet a patient that has already had the surgery
- An album of patient stories available to view on request

Contact details

Jamilla Kausar
Movement and Disorder Nurse Specialist
Independent and Supplementary Prescriber

Level 7, Area 3
Queen Elizabeth Hospital Birmingham
Mindelsohn Way
Edgbaston
Birmingham, B15 2WB

Telephone: 07770 971 781
Email: Jamilla.Kausar@uhb.nhs.uk
Fax: 0121 371 5823
Why do we offer deep brain stimulation?

Bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) is currently the best surgical option offered to patients with advanced Parkinson’s disease who have developed side effects from medication.

Neurosurgeons have used electrical stimulation since the 1960s as a way to locate and distinguish specific sites in the brain. In the process they discovered that stimulation of certain brain structures suppresses the symptoms of neurological disorders such as tremor. The development of brain stimulation technology occurred in the 1980s.

In 1987, Professor Alim-Louis Benabid and Pierre Pollack of the University of Grenoble in France published the results of the first application of deep brain stimulation for the treatment of movement disorders.

Since 1998, deep brain stimulation has been used to benefit patients with advanced levodopa responsive Parkinson’s disease. Therapy targets are the STN or the globus pallidus (GP) to suppress symptoms of Parkinson’s disease. These areas are also intricately involved in movement control.

The neurosurgeons at the Queen Elizabeth Hospital have been implanting deep brain stimulators in the STN area of the brain in Parkinson’s disease patients since 1999.

It is our philosophy to make the procedure as minimally distressing for the patient as possible, so we have developed a technique whereby the whole procedure is done under general anaesthetic in one day enabling the patient to be discharged 2-3 days after surgery.

DBS does not cure the underlying neurological disorder. It is reversible in that should new therapies or a cure be developed the system can be turned off.
What does the treatment involve?

The procedure involves the insertion of 2 leads – insulated wire terminating in four electrodes (contacts) into the STN areas of the brain. The electrode lead is connected to an extension lead which is passed under the skin across the top of the scalp, down the side of the neck and shoulder and then connected to a pulse generator which is implanted under the skin just under the collar bone. The pulse generator provides power and electrical pulse for stimulation. It is a small sealed device similar to a cardiac pacemaker.

DBS lead
Thin, insulated wire, with four electrodes, that deliver stimulation to targeted areas.

Extension
An insulated wire that connects the lead to the neurostimulator.

Neurostimulator
A pacemaker-like device that contains a battery and circuitry to generate electrical signals that are delivered by the leads to the targeted structures deep within the brain.
Am I suitable for surgery?

To be suitable for this procedure:

• you must have a diagnosis of Parkinson’s disease with no known cause
• you must have had a good response to levodopa (Sinemet or Madopar) and are now developing side effects such as dyskinesia (involuntary abnormal movements). You will also have symptoms which are not controlled adequately by drug therapy, such as levodopa and dopamine receptor agonists
• you are now fluctuating between ‘ON’ (periods of good mobility) and ‘OFF’ (periods of poor mobility) throughout the course of the day
• you should have no evidence of dementia or significant memory disturbance

The Benefits of STN Stimulation

• Improvement in the amount of ‘ON’ time
• Reduce the severity and amount of ‘OFF’ time
• Improvement in mobility for longer periods during the day
• Enable a reduction in medication thus reducing the duration of abnormal involuntary movements that are a common side effect of Parkinson’s disease medication

The risks related to STN Stimulation Surgery

• Haemorrhage which can cause stroke or death
• Infection which could lead to the removal of the system
• Seizures
• Complications from general anaesthesia

The complications from hardware and its components

• Parts of the system eroding through skin
• Lead breakage
• Battery failure
The potential side effects of deep brain stimulation

Much of these side effects are transient and can be treated by either adjusting stimulation or medication

- Speech problems
- Abnormal, involuntary muscle contractions (dystonia)
- Dizziness
- Movement problems or reduced coordination
- Weight gain

Our complications and adverse events are very low. We continuously monitor and record all incidents. If you would like to know our up-to-date results please contact the movement disorder nurse specialist on 07770971781.

After your outpatient appointment, you will have been asked to reflect on the consultation at home before making your decision to proceed to surgery.

Once you have decided to go ahead with surgery the movement disorder nurse specialist will arrange an appointment for you to see a Consultant Neuropsychologist and an application for funding of the operation will be submitted to your local primary care team.

As part of the pre-surgery assessment, every patient wanting to undergo surgery for deep brain stimulation will be required to undergo psychometric testing. This is to ensure that there is no evidence of significant cognitive decline or dementia. During this consultation the psychologist will ask you to do a number of tests that look at things such as memory, language, concentration, problem-solving and other brain functions.

The testing is completed in a single appointment but this testing can take a whole morning (with suitable breaks).

Please bring with you all your current medication and a snack. You are welcome to bring a friend or member of your family with you.

The movement disorder nurse specialist will inform you of the results within 4 weeks and if you still wish to continue on the journey then she
will arrange you next appointment with pre-admission clinic.

The aim of the pre-admission clinic is to gather some basic medical information and check that you are fit for general anaesthetic.

During your appointment you will be given a health screening questionnaire to complete. The pre-admission nurse will then go through your completed form with you and ask about relevant health and medical history.

In order to ensure your safety and the highest quality of care during the procedure, you will also undergo the following tests:

- Weight and height check
- Have a heart trace (ECG)
- Blood tests
- Any other test that may be relevant such as a chest x-ray
- A medical examination by a doctor
- Urinalysis (test on a sample of urine)
- Anaesthetic review to identify any problems
- MRSA screening, the purpose of this is to reduce the risk of healthcare associated infections developing such as MRSA. The screening also helps reduce the rates of MRSA by cross-infection (from patient to patient).
The treatment

Day 1

You will be admitted to a ward within the Neuroscience Department and cared for by ward staff who are experienced in looking after patients with movement disorders.

The movement disorder nurse specialist will ensure your medication is accurately prescribed on the hospital system so there is no disruption to your regular regime.

You may also be given the option to have a pre-surgery video made.

The ward staff will carry out routine observations.

You will be able to take all your medication, eat and drink, up to 03:00am of day two.

Day 2

On the day of your operation the anaesthetist who will be administering your anaesthetic will visit you on the ward. This pre-operative visit is your opportunity to ask questions or voice any concerns you may have about any aspects of the anaesthetic you are going to receive.

Between 07:30-08:00, you will be assisted to put on a theatre gown and, using a black marker pen, the site of the operation will be marked and you will be taken down to the MRI anaesthetic room.

In the anaesthetic room, you will be put to sleep and then the frame will be fitted to your head.

The type of anaesthesia used is general anaesthetic which will render you completely unconscious. You will have no memory of the surgical procedure when you wake. The amount of anaesthetic received will be carefully monitored, controlled and adjusted for the duration of the procedure.
You will then be taken to the Imaging room for a magnetic resonance scan (MRI). The target area for deep brain stimulation is measured from the scan pictures.

In theatre, your hair will be washed with an antibacterial shampoo. The surgeon will then mark your scalp where the electrodes need to enter the skull and a small disc of bone will be removed on each side. A plastic ring is fixed to the bone to hold the electrodes in place.

A recording electrode is inserted into the brain to check the exact position of the target area and, when the doctor has a good electrophysiological recording, the test electrode is removed and the permanent electrode is inserted and fixed in place.

The frame is now removed and the skin of the chest wall and neck prepared for the battery and wires.

At the end of the procedure, you will have a chest wound for the battery, two head wounds for the electrodes and a small wound near the ear for the tunnelling of the wires.

The whole system is under the skin.
Post operation

Day 3

The movement disorder nurse specialist will visit you on the ward in the morning and assess your mobility. It is important that you get up and mobilise around the ward as much as possible and rest at regular intervals throughout the day.

You may feel exceptionally well and experience an immediate reduction in your symptoms. This is the brain swelling effect. The specialist nurse will advise you on appropriate medication reduction.

You will be well supported by ward staff and can contact or ask ward staff to contact your specialist nurse if needed any time during the day.

Day 4-5

As long as there are no complications you will usually be discharged on day 4 or 5.

Prior to discharge the movement disorder nurse specialist will give you clear and precise instructions for:
Surgical wound care

There are two wounds on the top of your head, one just behind the ear and one on the left/right side of your chest.

You will need to arrange an appointment with your GP practice nurse or district nurse to remove the clips from your wound. Clips need to be removed 7 days after your operation.

Medication advice

You may experience brain swelling effect immediately following surgery before the stimulator is activated. The improvements in symptoms will allow you to reduce some levodopa medication. However, this improvement is temporary and after a few weeks the symptoms return. When the stimulator is activated symptoms will improve again.
Frequently asked questions

Q Can one of my family members visit me on the morning of surgery?
A Yes, family members and carers are welcome to come in and see you before 08:00 on the day of surgery.

Q How long will I be in theatre for?
A You are normally taken down to theatre between 08:00-08:30 the operation is an all day procedure.

Q Will any of my hair be shaved off?
A No, we do not shave any hair off. It will be shampooed with antibacterial wash before and after surgery.

Q Will I be able to feel the device in my body?
A Yes, you will notice very small bumps on either side of your head. The wires and battery box can be felt under the skin.

Q How long will the battery last before I have to have it replaced?
A Approximately 7 years but possibly longer.

Q Are there any activities I can’t do once I have had this surgery?
A It is recommended that you do not do any strenuous physical activity for at least 6 weeks after surgery to allow surgical wounds to heal properly. Parachute jumping and skydiving are not recommended as these types of activities can cause damage to the implanted device and cause the leads to dislodge.

Q How long do I have to wait before I can drive?
A DVLA rules and regulations are frequently updated so it is advisable to check this with DVLA or ask the movement disorder nurse specialist for most up-to-date regulation on driving?
Q After DBS do I need to take special precautions before having certain medical procedures?

A After DBS it would be advisable to have prophylactic antibiotics if you need dental work or procedures involving either general anaesthetic or urinary catheterisation in order to avoid bacteria settling on the hardware and causing infection.

Q Can I have laser procedures?

A Laser procedures are unlikely to affect the DBS system as long as the laser is directed away from the neurostimulation system.

Q What devices and equipment should I avoid?

A You should avoid theft detectors and security screening devices like those in airports. When approaching theft detectors or security gates you should show your patient identification card to security personnel, ask that you be allowed to bypass the security device and request a search by hand.

You can normally operate the following household items and office equipment without any problem:

- Microwave ovens
- Televisions, radio, video recorder, CD player, mobile phone
- Tabletop appliances such as toasters, blenders, electric can openers and food processors
- Hand-held items such as hair dryers, shavers, and remote controls
- Appliances such as washers, dryers, garage door openers, electric stoves and vacuum cleaners
- Electric blankets and heating pads
- Personal computers, copiers and fax machines
Can I have X-ray and CT or PET scan after DBS?

Yes, X-ray, CT and PET scans are not likely to affect an implanted neurostimulator system.

Can I have MRI scan?

MRI of the head can be carried out in centres who perform surgery.

Can I have diathermy?

Diathermy in the UK means electrocautery as used in operating theatres. We would recommend that only bipolar diathermy should be used in operations if possible. However, if only monopolar is available then high voltage mode should be avoided. The power setting should be as low as possible and the ground plate should be kept as far away from the neurostimulator, extension and leads as possible.

Some confusion has arisen as the neurostimulators are made in America and the American guidance on diathermy is used to mean Shortwave Diathermy, Microwave Diathermy and Therapeutic Ultrasound Diathermy, which are used to relieve pain, stiffness and muscle spasms and are often used by physiotherapists. All three of these are dangerous for people who have had DBS and can lead to severe injury, so must be avoided.
Glossary

CT Scan – Computerised Tomography Scan

DBS – Deep Brain Stimulation

DVLA – Driver Vehicle Licensing Agency

ECG – (Electrocardiogram) A test that measures the electrical activity of the heart

Electrocautery – A surgical technique that uses high frequency current to seal blood vessels

Globus Pallidus – One of the components that make up the basal ganglia in the brain

MRSA – Methicillin Resistant Staphylococcus Aureus is a bacterium responsible for several difficult to treat infections in humans

MRI – Magnetic Resonance Imaging scan is a imaging test that uses powerful magnets and radio waves to create pictures of the body

PET Scan – Positron Emission Tomography

STN – Subthalamic Nucleus

Thalamus (VIM) – Ventral Intermediate Nucleus of Thalamus
Images courtesy of Medtronic and St Jude.